7.1 Integration By Parts/43: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}
\int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx </math> \\[2ex]
\int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx </math> \\[2ex]
\end{align}
</math>
&= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex]
&= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex]
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex]
\end{align}
</math>

Revision as of 00:21, 29 November 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle  \begin{align} \int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx }
 \\[2ex]

\end{align} </math>

&= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex] &= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex] &= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex]