7.1 Integration By Parts/29: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math> f'(x)= \int_{}^{}\cos(x)\ln(sin(x))\cdot dx </math> <br><br>
<math> f'(x)= \int_{}^{}\cos(x)\ln(sin(x))\cdot dx </math> <br><br>


<math>\int_{}^{}\cos(x)\ln(\sin(x))\cdot dx = \int_{}^{}\ln(u)\cdot du ~ ~ ~ = ~ ~ ~ ~ uln(u)-\int_{}^{} du =u \cdot ln(u)-u+c</math><br>
<math>\int_{}^{}\cos(x)\ln(\sin(x))\cdot dx = \int_{}^{}\ln(u)\cdot du ~ ~ ~ = ~ ~ ~ ~ u\ln(u)-\int_{}^{} du =u\ln(u)-u+c</math><br>
<math>u=\sin(x) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ z=\ln(u) ~ ~ ~ ~ ~ dw=du</math> <br>  
<math>u=\sin(x) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ z=\ln(u) ~ ~ ~ ~ ~ dw=du</math> <br>  
<math> du=\cos(x)\cdot dx ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ dz=\frac{1}{x}\cdot du ~ ~ w=u</math> <br><br>
<math> du=\cos(x)\cdot dx ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ dz=\frac{1}{x}\cdot du ~ ~ w=u</math> <br><br>
<math>\text{Therefore, } f(x)=sin(x)ln(sin(x))-sin(x)+c</math>
<math>\text{Therefore, } f(x)=\sin(x)\ln(\sin(x))-\sin(x)+c</math>

Revision as of 22:20, 26 November 2022