5.5 The Substitution Rule/55: Difference between revisions
No edit summary |
No edit summary |
||
| Line 20: | Line 20: | ||
\int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt | \int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt | ||
= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] | |||
= 4\cdot \tan^2(u) | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 16:09, 4 October 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \frac{t}{4} du &= \frac{1}{4}dt 4du &=dx \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt = 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] = 4\cdot \tan^2(u) \end{align} }