5.5 The Substitution Rule/55: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>
\int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt
\int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt
</math>
<math>
\begin{align}
u &= \frac{t}{4}
du &= \frac{1}{4}dt
4du &=dx
\end{align}
</math>
<math>
\begin{align}
\int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex]
&= 4\cdot \tan^2(u)
\end{align}
</math>
</math>

Revision as of 16:08, 4 October 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \frac{t}{4} du &= \frac{1}{4}dt 4du &=dx \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] &= 4\cdot \tan^2(u) \end{align} }