5.5 The Substitution Rule/33: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 18: Line 18:
&= - \int{(\sqrt{u})}du \\[2ex]
&= - \int{(\sqrt{u})}du \\[2ex]
&= \int (u^{\frac{1}{2}})du
&= \int (u^{\frac{1}{2}})du
&= -\frac{2}{3}
&= -\frac{2}{3} \u + c
\end{align}
\end{align}
</math>
</math>

Revision as of 16:21, 29 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int {\sqrt{\cot(x)}} \csc^2{(x)}dx }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \cot{(x)} \\[2ex] du &= -csc^2{(x)}dx \\[2ex] dx &= \frac{du}{-csc^2{(x)}} \\[2ex] \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} &= \int {\sqrt{u}} \csc^2{(x)} \frac{du}{-csc{(x)}} &= - \int{(\sqrt{u})}du \\[2ex] &= \int (u^{\frac{1}{2}})du &= -\frac{2}{3} \u + c \end{align} }