5.4 Indefinite Integrals and the Net Change Theorem/25: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 4: | Line 4: | ||
\int_{-2}^{2}({3u+1})^2 du &= \int(9u^2+6u+1)du \\[2ex] | \int_{-2}^{2}({3u+1})^2 du &= \int(9u^2+6u+1)du \\[2ex] | ||
&= | &= \left(3u^3+3u^2+u\right)\bigg|_{-2}^{2} \\ [2ex] | ||
&= {3\cdot 2^3 + 3\cdot 2^2 +2 - 3\cdot -2^3 + 3 \cdot-2^2 -2} \\[2ex] | &= {3\cdot 2^3 + 3\cdot 2^2 +2 - 3\cdot -2^3 + 3 \cdot-2^2 -2} \\[2ex] | ||
&= {52} \\[2ex] | &= {52} \\[2ex] | ||
Revision as of 15:03, 21 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{-2}^{2}({3u+1})^2 du &= \int(9u^2+6u+1)du \\[2ex] &= \left(3u^3+3u^2+u\right)\bigg|_{-2}^{2} \\ [2ex] &= {3\cdot 2^3 + 3\cdot 2^2 +2 - 3\cdot -2^3 + 3 \cdot-2^2 -2} \\[2ex] &= {52} \\[2ex] \end{align} }