6.1 Areas Between Curves/10: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 26: Line 26:
\end{align}
\end{align}
</math>
</math>
<math> \int_{0}^{9} \left(1+\sqrt{x} - \frac{3+x}{3}\right)dx = \int_{-3}^{-2}\left((x^2)-(8-x^2)\right)dx + \int_{-2}^{2} \left((8-x^2) - (x^2)\right)dx + \int_{2}^{3}\left((x^2)-(8-x^2)\right)dx = \frac{14}{3} + \frac{64}{3} + \frac{14}{3} = \frac{92}{3}</math>

Revision as of 04:50, 20 September 2022

Desmos-graphs.png

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \color{red}\mathbf{y=1+\sqrt{x}} & \color{royalblue}\mathbf{y=\frac{3+x}{3}} \\ \\ \end{align} }



Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{9} \left(1+\sqrt{x} - \frac{3+x}{3}\right)dx = \int_{-3}^{-2}\left((x^2)-(8-x^2)\right)dx + \int_{-2}^{2} \left((8-x^2) - (x^2)\right)dx + \int_{2}^{3}\left((x^2)-(8-x^2)\right)dx = \frac{14}{3} + \frac{64}{3} + \frac{14}{3} = \frac{92}{3}}