6.1 Areas Between Curves/23: Difference between revisions
No edit summary |
No edit summary |
||
| Line 30: | Line 30: | ||
&= \left[\sin(\frac{\pi}{6})+\frac{1}{2}\cos(\frac{2\pi}{6})\right]-\left[\sin(0)+\frac{1}{2}\cos(2(0))\right] \\[2ex] | &= \left[\sin(\frac{\pi}{6})+\frac{1}{2}\cos(\frac{2\pi}{6})\right]-\left[\sin(0)+\frac{1}{2}\cos(2(0))\right] \\[2ex] | ||
&= \frac{1}{2}+\frac{1}{2}(\frac{1}{2}) | |||
&= \frac{1}{2}+\frac{1}{4}-(0+\frac{1}{2}) | &= \frac{1}{2}+\frac{1}{4}-(0+\frac{1}{2}) | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 01:53, 20 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \color{red} \mathbf{y=\cos(x)} & \color{royalblue}\mathbf{y=\sin(2x)} \\ & x=0 & x=\frac{\pi}{2}\\ \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \cos(x) &= \sin(2x) \\ x &= \frac{\pi}{2} \\ x &= \frac{\pi}{6} \\ \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{\frac{\pi}{6}} \left(\cos(x) - \sin(2x) \right)dx &= \left[\sin(x)+\frac{1}{2}\cos(2x) \right]\Bigg|_{0}^{\frac{\pi}{6}} \\[2ex] &= \left[\sin(\frac{\pi}{6})+\frac{1}{2}\cos(\frac{2\pi}{6})\right]-\left[\sin(0)+\frac{1}{2}\cos(2(0))\right] \\[2ex] &= \frac{1}{2}+\frac{1}{2}(\frac{1}{2}) &= \frac{1}{2}+\frac{1}{4}-(0+\frac{1}{2}) \end{align} }