6.1 Areas Between Curves/23: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 29: Line 29:
\int_{0}^{\frac{\pi}{6}} \left(\cos(x) - \sin(2x) \right)dx &= \left[\sin(x)+\frac{1}{2}\cos(2x) \right]\Bigg|_{0}^{\frac{\pi}{6}} \\[2ex]
\int_{0}^{\frac{\pi}{6}} \left(\cos(x) - \sin(2x) \right)dx &= \left[\sin(x)+\frac{1}{2}\cos(2x) \right]\Bigg|_{0}^{\frac{\pi}{6}} \\[2ex]


&= [\sin(\frac{\pi}{6})+\frac{1}{2}\cos(2(\frac{\pi}{6}))]-[\sin(0)+\frac{1}{2}\cos(2(0))]
&= \frac{1}{2}+\frac{1}{4}-(0+\frac{1}{2})
&= \frac{1}{2}+\frac{1}{4}-(0+\frac{1}{2})


\end{align}
\end{align}
</math>
</math>

Revision as of 01:50, 20 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \color{red} \mathbf{y=\cos(x)} & \color{royalblue}\mathbf{y=\sin(2x)} \\ & x=0 & x=\frac{\pi}{2}\\ \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \cos(x) &= \sin(2x) \\ x &= \frac{\pi}{2} \\ x &= \frac{\pi}{6} \\ \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\frac{\pi}{6}} \left(\cos(x) - \sin(2x) \right)dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left(\sin(2x)- \cos(x) \right)dx }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{\frac{\pi}{6}} \left(\cos(x) - \sin(2x) \right)dx &= \left[\sin(x)+\frac{1}{2}\cos(2x) \right]\Bigg|_{0}^{\frac{\pi}{6}} \\[2ex] &= [\sin(\frac{\pi}{6})+\frac{1}{2}\cos(2(\frac{\pi}{6}))]-[\sin(0)+\frac{1}{2}\cos(2(0))] &= \frac{1}{2}+\frac{1}{4}-(0+\frac{1}{2}) \end{align} }