6.1 Areas Between Curves/19: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
19)  
19)  


<math>\color{red} x=4+y^2    \color{blue} x=2y^2</math>
<math>  
\begin{align}


<math>\int_{-2}^{2} (4+y^2)-(y^2)</math>
& \color{red} \mathbf{x=4+y^2}
& \color{royalblue}\mathbf{x=2y^2} \\


\end{align}
</math>
<math>
\begin{align}
4+y^2 &= 2y^2 \\
4    &=y^2 \\
y &=\sqrt{4} \\
y &= \pm2 \\
\int_{-2}^{2} [(4+y^2)-(2y^2)]dy \\
=\int_{-2}^{2} [4-y^2]dy \\
=4y-\frac{y^3}{3} \int_{2}^{-2}
\end{align}
</math>





Revision as of 23:19, 17 September 2022

19)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \color{red} \mathbf{x=4+y^2} & \color{royalblue}\mathbf{x=2y^2} \\ \end{align} }

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}4+y^{2}&=2y^{2}\\4&=y^{2}\\y&={\sqrt {4}}\\y&=\pm 2\\\int _{-2}^{2}[(4+y^{2})-(2y^{2})]dy\\=\int _{-2}^{2}[4-y^{2}]dy\\=4y-{\frac {y^{3}}{3}}\int _{2}^{-2}\end{aligned}}}


5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 27