6.1 Areas Between Curves/19: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
19) | 19) | ||
<math>\ | <math> | ||
\begin{align} | |||
& \color{red} \mathbf{x=4+y^2} | |||
& \color{royalblue}\mathbf{x=2y^2} \\ | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
4+y^2 &= 2y^2 \\ | |||
4 &=y^2 \\ | |||
y &=\sqrt{4} \\ | |||
y &= \pm2 \\ | |||
\int_{-2}^{2} [(4+y^2)-(2y^2)]dy \\ | |||
=\int_{-2}^{2} [4-y^2]dy \\ | |||
=4y-\frac{y^3}{3} \int_{2}^{-2} | |||
\end{align} | |||
</math> | |||
Revision as of 23:19, 17 September 2022
19)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \color{red} \mathbf{x=4+y^2} & \color{royalblue}\mathbf{x=2y^2} \\ \end{align} }
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}4+y^{2}&=2y^{2}\\4&=y^{2}\\y&={\sqrt {4}}\\y&=\pm 2\\\int _{-2}^{2}[(4+y^{2})-(2y^{2})]dy\\=\int _{-2}^{2}[4-y^{2}]dy\\=4y-{\frac {y^{3}}{3}}\int _{2}^{-2}\end{aligned}}}