5.5 The Substitution Rule/17: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 18: Line 18:
\begin{align}
\begin{align}


\int \frac{a+bx^2}{\sqrt{3ax+bx^3}}dx &= \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2)\;dx = \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2\;dx)\  \\[2ex]
\int \frac{a+bx^2}{\sqrt{3ax+bx^3}}dx &= \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2)\;dx = \int \frac{1}{\sqrt{3ax+bx^3}}((a+bx^2)\;dx)\  \\[2ex]





Latest revision as of 19:18, 20 September 2022



Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \frac{a+bx^2}{\sqrt{3ax+bx^3}}dx &= \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2)\;dx = \int \frac{1}{\sqrt{3ax+bx^3}}((a+bx^2)\;dx)\ \\[2ex] &= \frac{1}{3}\int \frac{1}{\sqrt{u}}(du) = \frac{1}{3}\int u^{-1/2} du \\[2ex] &= \frac{1}{3}\frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C \\[2ex] &= \frac{2}{3}(3ax+bx^3)^{1/2} + C \\[2ex] &= \frac{2}{3}{\sqrt{3ax+bx^3}} + C \end{align} }