5.5 The Substitution Rule/41: Difference between revisions
No edit summary |
No edit summary |
||
| Line 18: | Line 18: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int (\frac{1}{\sqrt{1-x^{2}}} | \int (\frac{1}{\sqrt{1-x^{2}}}\frac{1}{\arcsin {x}})\;dx | ||
&= \int \frac{1}{u}\;du \\[2ex] | &= \int \frac{1}{u}\;du \\[2ex] | ||
&= \ln |u| +c \\[2ex] | &= \ln |u| +c \\[2ex] | ||
Latest revision as of 23:19, 13 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \frac{1}{\sqrt{1-x^{2}} \arcsin {x}} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \arcsin {x} \\[2ex] du &= \frac{1}{\sqrt{1-x^2}}\;dx \\[2ex] \end{align} }
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int ({\frac {1}{\sqrt {1-x^{2}}}}{\frac {1}{\arcsin {x}}})\;dx&=\int {\frac {1}{u}}\;du\\[2ex]&=\ln |u|+c\\[2ex]&=\ln |\arcsin {x}|+c\\[2ex]\end{aligned}}}