5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 11: | Line 11: | ||
<math> | <math> | ||
\int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha | \int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\frac{1}{cos^2\alpha}d\alpha = | ||
\int\sec^2\alpha \,d\alpha = | |||
\int\ | |||
\ | |||
\tan{x}+C | \tan{x}+C | ||
Revision as of 17:49, 13 September 2022
Note:
Or,
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int (1+\tan ^{2}{\alpha })\,d\alpha =\int \left(1+{\frac {sin^{2}\alpha }{cos^{2}\alpha }}\right)d\alpha =\int \left({\frac {cos^{2}\alpha +sin^{2}\alpha }{cos^{2}\alpha }}\right)d\alpha =\int {\frac {1}{cos^{2}\alpha }}d\alpha =\int \sec ^{2}\alpha \,d\alpha =\tan {x}+C}
Note: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \cos^2\alpha+sin^2\alpha=1}