6.2 Trigonometric Functions: Unit Circle Approach/79: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 13: Line 13:
\cos{(\theta)} &= \frac{-3}{5} & \sec{(\theta)} &= \frac{5}{-3}\\[2ex]  
\cos{(\theta)} &= \frac{-3}{5} & \sec{(\theta)} &= \frac{5}{-3}\\[2ex]  


\tan{(\theta)} &= \frac{4}{-3} & \cot{(\theta)} &= \frac{-3}{4} \\[2ex]
\tan{(\theta)} &= \frac{-3}{2} & \cot{(\theta)} &= \frac{-3}{4} \\[2ex]




\end{align}
\end{align}
</math>
</math>

Revision as of 15:56, 7 September 2022


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \theta \rightarrow x=2, \, y=-3, \, r= \sqrt{13} }



Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 9 + 16 = 25 }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt{25} = 5 = r }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sin{(\theta)} &= \frac{4}{5} & \csc{(\theta)} &= \frac{5}{4}\\[2ex] \cos{(\theta)} &= \frac{-3}{5} & \sec{(\theta)} &= \frac{5}{-3}\\[2ex] \tan{(\theta)} &= \frac{-3}{2} & \cot{(\theta)} &= \frac{-3}{4} \\[2ex] \end{align} }