5.5 The Substitution Rule/21: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
\begin{align}
\begin{align}


\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt &= 2\int \cos {u} du = 2 \sin{u}+c \\[2ex]
\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt &= 2\int \cos {u} du  
&= 2 \sin{u}+c \\[2ex]
&= 2 \sin(\sqrt{u}) + c \\[2ex]
&= 2 \sin(\sqrt{u}) + c \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 15:42, 7 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int {\frac {\cos {({\sqrt {t}})}}{\sqrt {t}}}dt}


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \sqrt{u} \\[2ex] du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dx \\[2ex] 2du &= \frac{1}{\sqrt{t}} dx \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt &= 2\int \cos {u} du &= 2 \sin{u}+c \\[2ex] &= 2 \sin(\sqrt{u}) + c \\[2ex] \end{align} }