5.5 The Substitution Rule/21: Difference between revisions
No edit summary |
No edit summary |
||
| Line 15: | Line 15: | ||
<math> | <math> | ||
2\int \cos {u} du = 2 \sin{u}+c = 2 \sin(\sqrt{u}) + c | \begin{align} | ||
2\int \cos {u} du &= 2 \sin{u}+c | |||
&= 2 \sin(\sqrt{u}) + c | |||
</math> | </math> | ||
Revision as of 15:39, 7 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int {\frac {\cos {({\sqrt {t}})}}{\sqrt {t}}}dt=2\int \cos {u}du=2\sin {u}+c=2\sin({\sqrt {u}})+c}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \sqrt{u} \\[2ex] du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dx \\[2ex] 2du &= \frac{1}{\sqrt{t}} dx \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} 2\int \cos {u} du &= 2 \sin{u}+c &= 2 \sin(\sqrt{u}) + c }