5.3 The Fundamental Theorem of Calculus/41: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 17: | Line 17: | ||
&= -\cos(x)\bigg|_{0}^{\frac{\pi}{2}} + \sin(x)\bigg|_{\frac{\pi}{2}}^{\pi} \\[2ex] | &= -\cos(x)\bigg|_{0}^{\frac{\pi}{2}} + \sin(x)\bigg|_{\frac{\pi}{2}}^{\pi} \\[2ex] | ||
&= \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] + \left[\sin(\pi)-\sin\left(\frac{\pi}{2}\right)\right] \\[2ex] | &= \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] + \left[\sin(\pi)-\sin\left(\frac{\pi}{2}\right)\right] \\[2ex] | ||
&= [0+1]+[0-1] = 0 | &= [0+1]+[0-1] \\[2ex] | ||
&= 0 | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
Latest revision as of 22:07, 6 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{\pi}f(x)\,dx &= \int_{0}^{\frac{\pi}{2}}f(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}f(x)\,dx = \int_{0}^{\frac{\pi}{2}}\sin(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}\cos(x)\,dx \\[2ex] &= -\cos(x)\bigg|_{0}^{\frac{\pi}{2}} + \sin(x)\bigg|_{\frac{\pi}{2}}^{\pi} \\[2ex] &= \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] + \left[\sin(\pi)-\sin\left(\frac{\pi}{2}\right)\right] \\[2ex] &= [0+1]+[0-1] \\[2ex] &= 0 \end{align} }