5.4 Indefinite Integrals and the Net Change Theorem/25: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


& \int_{-2}^{2}({3u+1})^2 du \\[2ex]
& \int_{-2}^{2}({3u+1})^2 du = \int {3u^2+6u+1} {du} \\[2ex]
 
&= \int {3u^2+6u+1} {du} \\[2ex]


&= {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex]
&= {3u^3+3u^2+u}\bigg|_{-2}^{2} \\[2ex]

Revision as of 17:38, 7 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&\int _{-2}^{2}({3u+1})^{2}du=\int {3u^{2}+6u+1}{du}\\[2ex]&={3u^{3}+3u^{2}+u}{\bigg |}_{-2}^{2}\\[2ex]&={3\cdot 2^{3}+\cdot 2^{2}+2-3\cdot -2^{3}+3\cdot -2^{2}-2}\\[2ex]&={52}\end{aligned}}}