5.4 Indefinite Integrals and the Net Change Theorem/41: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math>\int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt | <math>\begin{align}\int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt=\int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1))(t^2+1)} dt | ||
</math> | \end{align}</math> | ||
Revision as of 20:03, 1 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{\frac {1}{\sqrt {3}}}{\frac {t^{2}-1}{t^{4}-1}}dt=\int _{0}^{\frac {1}{\sqrt {3}}}{\frac {(t^{2}-1)}{(t^{2}-1))(t^{2}+1)}}dt\end{aligned}}}