6.2 Trigonometric Functions: Unit Circle Approach/63: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3}
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3}


& \cot{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{\cancel{-}1}{2}}{\frac{\cancel{-}\sqrt{3}}{2}}=\frac{1}{2}\cdot\frac{2}{\sqrt{3}} \\[2ex]
& \cot{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{\cancel{-}1}{2}}{\frac{\cancel{-}\sqrt{3}}{2}}=\frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 16:40, 30 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{-14\pi}{3} \Rightarrow \left(\frac{-1}{2}, \frac{-\sqrt{3}}{2}\right)}

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\sin {\left({\frac {-14\pi }{3}}\right)}&=-{\frac {\sqrt {3}}{2}}&\csc {\left({\frac {-14\pi }{3}}\right)}&={\frac {1}{\frac {\sqrt {3}}{2}}}={\frac {2}{\sqrt {3}}}\cdot {\frac {\sqrt {3}}{\sqrt {3}}}={\frac {2{\sqrt {3}}}{3}}\\[2ex]\cos {\left({\frac {-14\pi }{3}}\right)}&=-{\frac {1}{2}}&\sec {\left({\frac {-14\pi }{3}}\right)}&={\frac {1}{\frac {1}{2}}}=2\\[2ex]\tan {\left({\frac {-14\pi }{3}}\right)}&={\frac {{\cancel {-}}{\frac {\sqrt {3}}{2}}}{{\cancel {-}}{\frac {1}{2}}}}={\frac {\sqrt {3}}{\cancel {2}}}\cdot {\cancel {2}}={\sqrt {3}}&\cot {\left({\frac {-14\pi }{3}}\right)}&={\frac {\frac {{\cancel {-}}1}{2}}{\frac {{\cancel {-}}{\sqrt {3}}}{2}}}={\frac {1}{\cancel {2}}}\cdot {\frac {\cancel {2}}{\sqrt {3}}}\\[2ex]\end{aligned}}}