5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 4: | Line 4: | ||
&= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex] | &= \int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx \\[2ex] | ||
&= \left(\frac{1}{2} | &= \left(\frac{1}{2} {x^2}\right) | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 16:11, 30 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int \limits _{-1}^{2}(x-2|x|)dx\\[1ex]&=\int \limits _{-2}^{0}(x-2(-x))dx+\int \limits _{0}^{2}(x-2(x))dx\\[2ex]&=\left({\frac {1}{2}}{x^{2}}\right)\end{aligned}}}