5.4 Indefinite Integrals and the Net Change Theorem/13: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\int_{}^{}(\sin(x)+\sinh(x))dx</math> <br><br>
<math>\int_{}^{}(\sin(x)+\sinh(x))dx</math> <br><br>


<math>\text{Indefinite integrals in this problem }</math> <br><br>
                                                                      <math>\text{Indefinite integrals in this problem }</math> <br><br>
<math>\int_{}^{}(\sin(x))dx
                                                                      <math>\int_{}^{}(\sin(x))dx
=-\cos(x)+C</math>  
                                                                      =-\cos(x)+C</math>  


<math>=\int_{}^{}(-\cos(x)+\cosh(x))dx</math> <br><br>
<math>=\int_{}^{}(-\cos(x)+\cosh(x))dx</math> <br><br>

Revision as of 19:33, 26 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}(\sin(x)+\sinh(x))dx}

                                                                      Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Indefinite integrals in this problem }}
 

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}(\sin(x))dx =-\cos(x)+C}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\int_{}^{}(-\cos(x)+\cosh(x))dx}