5.4 Indefinite Integrals and the Net Change Theorem/3: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
& \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +c]} \\[2ex]
& \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +c]} \\[2ex]


& \frac{d}{dx} {\cos{x} - \frac{1}{3}\cdot 3\sin{x^2} \cos{x} +0}
& {\cos{x} - \frac{1}{3}\cdot 3\sin{x^2} \cos{x} +0} \\[2ex]
 
& \cos{x} - \sin^2{x}\cos{x} \\[2ex]





Revision as of 19:29, 26 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C \\[2ex] & \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +c]} \\[2ex] & {\cos{x} - \frac{1}{3}\cdot 3\sin{x^2} \cos{x} +0} \\[2ex] & \cos{x} - \sin^2{x}\cos{x} \\[2ex] \end{align} }