6.2 Trigonometric Functions: Unit Circle Approach/48: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
\cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2}        & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{2}{1} = 2\\[2ex]  
\cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2}        & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{2}{1} = 2\\[2ex]  


\tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{\left(\frac{5\pi}{6}\right)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]
\tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{1}{2}\cdot\frac{2}{-\sqrt{3}} = -\sqrt{3}  
 
 
 
& \cot{\left(\frac{5\pi}{6}\right)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 22:28, 25 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{5\pi}{6} \Rightarrow \left(\frac{-\sqrt{3}}{2}, \frac{1}{2}\right)}

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\sin {\left({\frac {5\pi }{6}}\right)}&={\frac {1}{2}}&\csc {\left({\frac {5\pi }{6}}\right)}&=-{\frac {2}{\sqrt {3}}}\cdot {\frac {\sqrt {3}}{\sqrt {3}}}={\frac {2{\sqrt {3}}}{3}}\\[2ex]\cos {\left({\frac {5\pi }{6}}\right)}&={\frac {-{\sqrt {3}}}{2}}&\sec {\left({\frac {5\pi }{6}}\right)}&={\frac {2}{1}}=2\\[2ex]\tan {\left({\frac {5\pi }{6}}\right)}&={\frac {\frac {1}{2}}{-{\frac {\sqrt {3}}{2}}}}=-{\frac {1}{2}}\cdot {\frac {2}{-{\sqrt {3}}}}=-{\sqrt {3}}&\cot {\left({\frac {5\pi }{6}}\right)}&=-{\frac {1}{\sqrt {3}}}=-{\frac {1}{\sqrt {3}}}\cdot {\frac {\sqrt {3}}{\sqrt {3}}}={\frac {\sqrt {3}}{3}}\\[2ex]\end{aligned}}}