6.1 Angles and Their Measure/41: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> 180^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{-(\cancel{2}\cdot \cancel{2}\cdot \cancel{5}\cdot \cancel{3})}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} = -\frac{\pi}{3} </math>") |
No edit summary |
||
| Line 1: | Line 1: | ||
<math> | <math> | ||
{180^{\circ}}{\pi}=\frac{-(\cancel{2}\cdot \cancel{2}\cdot \cancel{5}\cdot \cancel{3})}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} | |||
180^{\circ} | |||
= -\frac{\pi}{3} | = -\frac{\pi}{3} | ||
</math> | </math> | ||
Revision as of 21:59, 25 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {180^{\circ }}{\pi }={\frac {-({\cancel {2}}\cdot {\cancel {2}}\cdot {\cancel {5}}\cdot {\cancel {3}})}{1}}\cdot {\frac {\pi }{{\cancel {2}}\cdot {\cancel {2}}\cdot {\cancel {5}}\cdot {\cancel {3}}\cdot 3}}=-{\frac {\pi }{3}}}