6.1 Angles and Their Measure/41: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math> 180^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{-(\cancel{2}\cdot \cancel{2}\cdot \cancel{5}\cdot \cancel{3})}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} = -\frac{\pi}{3} </math>")
 
No edit summary
Line 1: Line 1:
<math>
<math>
 
{180^{\circ}}{\pi}=\frac{-(\cancel{2}\cdot \cancel{2}\cdot \cancel{5}\cdot \cancel{3})}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3}
180^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{-(\cancel{2}\cdot \cancel{2}\cdot \cancel{5}\cdot \cancel{3})}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3}


= -\frac{\pi}{3}
= -\frac{\pi}{3}


</math>
</math>

Revision as of 21:59, 25 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {180^{\circ }}{\pi }={\frac {-({\cancel {2}}\cdot {\cancel {2}}\cdot {\cancel {5}}\cdot {\cancel {3}})}{1}}\cdot {\frac {\pi }{{\cancel {2}}\cdot {\cancel {2}}\cdot {\cancel {5}}\cdot {\cancel {3}}\cdot 3}}=-{\frac {\pi }{3}}}