5.3 The Fundamental Theorem of Calculus/10: Difference between revisions
Jump to navigation
Jump to search
Andy Arevalo (talk | contribs) No edit summary |
Andy Arevalo (talk | contribs) No edit summary |
||
| Line 7: | Line 7: | ||
\frac{d}{dx}\int_{0}^{r}\sqrt{x^2+4}dx \\[2ex] | \frac{d}{dx}\int_{0}^{r}\sqrt{x^2+4}dx \\[2ex] | ||
\frac{d}{dx}\int_{b(x)}^{a(x)}F(t)dt=\frac{d}{dx}[b(x)] \cdot F(b(x))\\[2ex] | \frac{d}{dx}\int_{b(x)}^{a(x)}F(t)dt=\frac{d}{dx}[b(x)] \cdot F(b(x))-\frac{d}{dx}[a(x)] \cdot F(a(x))\\[2ex] | ||
1\cdot\sqrt{r^2+4} - 0\cdot\sqrt{0^2+4} \\[2ex] | 1\cdot\sqrt{r^2+4} - 0\cdot\sqrt{0^2+4} \\[2ex] | ||
Revision as of 20:03, 25 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}g(r)=\int _{0}^{r}{\sqrt {x^{2}+4}}dx\\[2ex]{\frac {d}{dx}}\int _{0}^{r}{\sqrt {x^{2}+4}}dx\\[2ex]{\frac {d}{dx}}\int _{b(x)}^{a(x)}F(t)dt={\frac {d}{dx}}[b(x)]\cdot F(b(x))-{\frac {d}{dx}}[a(x)]\cdot F(a(x))\\[2ex]1\cdot {\sqrt {r^{2}+4}}-0\cdot {\sqrt {0^{2}+4}}\\[2ex]={\sqrt {r^{2}+4}}\end{aligned}}}