5.3 The Fundamental Theorem of Calculus/35: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


\int_{1}^{9}\frac{1}{2x}dx = \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx = \frac{1}{2}\ln{|x|}\bigg|_{1}^{9}
\int_{1}^{9}\frac{1}{2x}dx = \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx =  
\frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-frac{1}{2}\ln{|1|}=
\ln{|9|}




\end {align}
\end {align}
</math>
</math>

Revision as of 19:25, 25 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{1}^{9}{\frac {1}{2x}}dx={\frac {1}{2}}\int _{1}^{9}{\frac {1}{x}}dx={\frac {1}{2}}\ln {|x|}{\bigg |}_{1}^{9}={\frac {1}{2}}\ln {|9|}-frac{1}{2}\ln {|1|}=\ln {|9|}\end{aligned}}}