5.3 The Fundamental Theorem of Calculus/17: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
FTC #1
FTC #1- <math>G(x)=f^\prime(x)</math>  or in other words <math>\frac{d}{dx}[\int\limits_{a(x)}^{b(x)}F(x)dx]</math> is <math>\ b^\prime(x)*f(b(x))-a^\prime(x)*f(a(x))</math>


<math>G(x)=f^\prime(x)</math>  or in other words <math>\frac{d}{dx}[\int\limits_{a(x)}^{b(x)}F(x)dx]</math> is <math>\ b^\prime(x)*f(b(x))-a^\prime(x)*f(a(x))</math>
17)<math>y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math>
 
<math>y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du</math>


so using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math>
so using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math>

Revision as of 18:52, 25 August 2022

FTC #1- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle G(x)=f^\prime(x)} or in other words Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}[\int\limits_{a(x)}^{b(x)}F(x)dx]} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ b^\prime(x)*f(b(x))-a^\prime(x)*f(a(x))}

17)Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=\int\limits_{1-3x}^{1}\frac{u^3}{(1+u^2)} du}

so using the formula we get y=Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (0)*f(1)-(-3)*f(1-3x)}

which is equal to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (3)*f(1-3x)}

which is=Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 3*\frac{(1-3x)^3}{(1+(1-3x)^2)}}

or simplified to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{3*(1-3x)^3}{(1+(1-3x)^2)}}



1 3 5 7 8 9 10 11 13 15 17 19 20 21 23 25 27 28 29 31 33 35 37 39 41 53