2024/G1/3: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
(One intermediate revision by the same user not shown) | |||
Line 11: | Line 11: | ||
==3.3 DERIVATIVE OF TRIGONOMETRIC FUNCTIONS== | ==3.3 DERIVATIVE OF TRIGONOMETRIC FUNCTIONS== | ||
<math> | <math> \lim_{a\to 0} \frac{sin(a)}{0} = 1 </math><br> | ||
<math> \lim_{a\to 0} \frac{cos(a)}{0} = 0 </math><br> | |||
<math> {\frac{d}{dx}} [sin(0)] = cos(0) </math><br> | |||
<math> {\frac{d}{dx}} [cos(0)] = -sin(0) </math><br> | |||
<math> {\frac{d}{dx}} [tan(0)] = sec^2(0) </math><br> | |||
<math> {\frac{d}{dx}} [csc(0)] = csc(0) \cdot cot(0) </math><br> | |||
<math> {\frac{d}{dx}} [sec(0)] = sec(0) \cdot tan(0) </math><br> | |||
<math> {\frac{d}{dx}} [cot(0)] = -csc^2(0) </math><br> | |||
== | ===Ex.2=== | ||
<math> f(x) = \frac{sec(x)}{1+tan(x)} </math><br> | |||
<math> F'(x) = \frac{[sec(x) \cdot tan(x)][1+tan(x)] - sec(x)[sec^2(x)}{[1+tan(x)]^2} </math><br> | |||
<math> F'(x) = \frac{sec(x)[tan(x)+tan^2(x)-sec^2(x)}{[1+tan(x)]^2} </math><br> | |||
<math> F'(x) = \frac{sec(x)(tan(x)+tan^2(x)-tan^2(x)-1)}{[1+tan(x)]^2} </math><br> | |||
<math> F'(x) = \frac{sec(x)[tan(x)-1]}{[1+tan(x)]^2} </math><br> | |||
<math> sec(x) = 0 \qquad tan(x)-1=0 \qquad tan(x)=1 </math> | |||
[[File:62f2b3b7b7b09276a4ad01f2_Unit%20Circle%20Degrees.gif|caption]] | |||
===Ex. 3=== | |||
==3.4 == | |||
===Point Slope Form=== | ===Point Slope Form=== | ||
<math> y - y_1 = m(x - x_1) </math> <br> | <math> y - y_1 = m(x - x_1) </math> <br> |
Latest revision as of 16:42, 25 April 2023
3.1 DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS
3.2 THE PRODUCT AND QUOTIENT RULES
3.3 DERIVATIVE OF TRIGONOMETRIC FUNCTIONS
Ex.2
Ex. 3
3.4
Point Slope Form