2024/G1/3: Difference between revisions

From Mr. V Wiki Math
< 2024‎ | G1
Jump to navigation Jump to search
No edit summary
 
(One intermediate revision by the same user not shown)
Line 11: Line 11:


==3.3 DERIVATIVE OF TRIGONOMETRIC FUNCTIONS==
==3.3 DERIVATIVE OF TRIGONOMETRIC FUNCTIONS==
<math>  
<math> \lim_{a\to 0} \frac{sin(a)}{0} = 1  </math><br>
<math> \lim_{a\to 0} \frac{cos(a)}{0} = 0  </math><br>
<math> {\frac{d}{dx}} [sin(0)] = cos(0) </math><br>
<math> {\frac{d}{dx}} [cos(0)] = -sin(0) </math><br>
<math> {\frac{d}{dx}} [tan(0)] = sec^2(0) </math><br>
<math> {\frac{d}{dx}} [csc(0)] = csc(0) \cdot cot(0) </math><br>
<math> {\frac{d}{dx}} [sec(0)] = sec(0) \cdot tan(0) </math><br>
<math> {\frac{d}{dx}} [cot(0)] = -csc^2(0) </math><br>


==Ch3 Sec4 ==
===Ex.2===
<math> f(x) = \frac{sec(x)}{1+tan(x)}  </math><br>
<math> F'(x) = \frac{[sec(x) \cdot tan(x)][1+tan(x)] - sec(x)[sec^2(x)}{[1+tan(x)]^2}  </math><br>
<math> F'(x) = \frac{sec(x)[tan(x)+tan^2(x)-sec^2(x)}{[1+tan(x)]^2}  </math><br>
<math> F'(x) = \frac{sec(x)(tan(x)+tan^2(x)-tan^2(x)-1)}{[1+tan(x)]^2}  </math><br>
<math> F'(x) = \frac{sec(x)[tan(x)-1]}{[1+tan(x)]^2}  </math><br>
<math> sec(x) = 0 \qquad tan(x)-1=0 \qquad tan(x)=1 </math>
[[File:62f2b3b7b7b09276a4ad01f2_Unit%20Circle%20Degrees.gif|caption]]
 
 
 
 
===Ex. 3===
 
==3.4 ==


===Point Slope Form===
===Point Slope Form===
<math> y - y_1 = m(x - x_1) </math> <br>
<math> y - y_1 = m(x - x_1) </math> <br>

Latest revision as of 16:42, 25 April 2023

3.1 DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS

3.2 THE PRODUCT AND QUOTIENT RULES







3.3 DERIVATIVE OF TRIGONOMETRIC FUNCTIONS









Ex.2






caption



Ex. 3

3.4

Point Slope Form