2024/G2/12: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 9: | Line 9: | ||
1) <math>{\frac{d}{dx}} [5 + \pi] = 0+0=0 </math> <br><br> | 1) <math>{\frac{d}{dx}} [5 + \pi] = 0+0=0 </math> <br><br> | ||
2) <math>{\frac{d}{dx}} [3x] = 3 \cdot {\frac{d}{dx}} [x] = 3(1)(x)^{1-1} = 3 \cdot x^0 = 3 </math> <br><br> | 2) <math>{\frac{d}{dx}} [3x] = 3 \cdot {\frac{d}{dx}} [x] = 3(1)(x)^{1-1} = 3 \cdot x^0 = 3 </math> <br><br> | ||
3) <math>{\frac{d}{dx}} [9x^2] = 18x </math> <br><br> | 3) <math>{\frac{d}{dx}} [9x^2] = 18x </math> <br><br> | ||
<math> \sqrt(x) </math> | 4) <math>{\frac{d}{dx}} [x^3 + x^2 + 10] = 3x^2 +2x + 0 </math> <br><br> | ||
5) <math>{\frac{d}{dx}} [\sqrt(x)] = {\frac{d}{dx}} [x^{\frac{1}{2}}] = {\frac{1}{2x}}^{{\frac{1}{2}}-{\frac{2}{2}}} = {\frac{1}{2x}}^{\frac{-1}{2}} = {\frac{1}{2\sqrt(x)}}</math><br><br> | |||
A1. <math> {\sqrt[n](x^m)} = ({\sqrt[n]x})^m = x^{\frac{m}{n}} </math><br><br> | |||
6) <math> {\frac{d}{dx}} [{\sqrt[3](x^2)}] = {\frac{d}{dx}} [x^{\frac{2}{3}}] = {\frac{2}{3}} \cdot x^{\frac{-1}{3}} = {\frac{2}{3} \cdot \sqrt[3](x)} </math><br><br> | |||
7) <math> {\frac{d}{dx}} [(\sqrt[5]x)^7] = {\frac{d}{dx}} [{\frac{7}{x^5}}] = {\frac{7}{5}} \cdot x^{{\frac{7}{5}} - 1} = {\frac{7}{5}} \cdot x^{{\frac{2}{5}}} = {\frac{7}{5}} \cdot {\sqrt [5]x^2} </math><br><br> | |||
8) <math> {\frac{d}{dx}} [3x^{10}+e^{x}-5^{x}] = 30x^{9} + e^{x} - ln(5) \cdot 5^{x} </math><br><br> | |||
9) <math> {\frac{d}{dx}} [{\frac{1}{x}}] = {\frac{d}{dx}} [x^{-1}] = -1 \cdot x^{-1-1} = -x^{-2} = - {\frac{1}{x^2}} </math><br><br><br> | |||
<math>\mathbf{\color{Purple}{PracticeProblems}}</math><br> | |||
1) <math> {\frac{d}{dx}} [\pi + 3x -5x^{3}] = 0+3-15x^{2} </math><br><br> | |||
2) <math> {\frac{d}{dx}} [e^{x} + 3^{x} - 5 \cdot 2^{x}] = e^{x} + ln(3) \cdot 3^{x} -5 \cdot ln(2) \cdot 2^{x} </math><br><br> | |||
3) <math> {\frac{d}{dx}} [x^{5} - 6x^{3} +2x +5] = 5x^{4} -18x^{2} + 2 + 0 </math><br><br> | |||
4) <math> {\frac{d}{dx}} [x\sqrt x] = {\frac{d}{dx}} [x^{1} \cdot x^{{\frac{1}{2}}}] = {\frac{d}{dx}} [x^{{\frac{3}{2}}}] = {\frac{3}{2}} \cdot x^{{\frac{3}{2}} -1} = {\frac{3}{2x}}^{{\frac{3}{2}}} - {\frac{2}{2}} = {\frac{3}{2x}}^{{\frac{1}{2}}} = {\frac{3}{2}} \cdot \sqrt x </math><br><br> | |||
5) <math> {\frac{d}{dx}} [{\frac{3}{x}} + \sqrt 2 - 5^{x}] = 3 \cdot {\frac{d}{dx}} [{\frac{1}{x}}] = 3 \cdot {\frac{d}{dx}} [x^{-1}] = (-1)(3) \cdot x^{-1-1} = -3 \cdot x^{-2} = {\frac{3}{x^{2}}} + 0 - ln(-5) \cdot -5^{x} = -{\frac{3}{x^{2}}} - ln(-5) \cdot -5^{x} </math> <br><br> | |||
\sqrt{x} < | 6) <math> {\frac{d}{dx}} [{\frac{4}{\sqrt[3]x^{2}}} - 3x^{9} + \sqrt[3]x \cdot {\frac{1}{x}}] = 4 \cdot x^{-{\frac{2}{3}}} = x^{-{\frac{2}{3}}-{\frac{3}{3}}} = x^{-{\frac{5}{3}}} </math><br><br> |
Latest revision as of 16:45, 14 April 2023
1. The derivative of a constant is 0 =
2.
3.
4.
5.
6.
1)
2)
3)
4)
5)
A1.
6)
7)
8)
9)
1)
2)
3)
4)
5)
6)