2024/G8/3: Difference between revisions

From Mr. V Wiki Math
< 2024‎ | G8
Jump to navigation Jump to search
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
[[2024/G8/13|Section 2]]<br>
[[2024/G8/13|Section 2]]<br>
==3.1 THE LIMIT OF A FUNCTION ==
==3.1 THE LIMIT OF A FUNCTION ==
Notes go here for 2.2... example:<br>
<math>\mathbf{New\ rules}</math><br>
<math>\lim_{z\to z_0} f(z)=f(z_0)</math>
 
<math>{\frac{d}{dx}} [c] = 0 </math> <br>
 
<math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br>
 
<math>{\frac{d}{dx}} [f(x)\pm g(x)] = {\frac{d}{dx}} [f(x)] \pm {\frac{d}{dx}} [g(x)] </math> <br>
 
<math>{\frac{d}{dx}} [a^x] = \ln(a)a^x </math><br>
 
<math>{\frac{d}{dx}} [e^x] = e^x </math><br>
 
 
<math>\color{green}Power\,Rule </math><br>
 
 
<math>{\frac{d}{dx}} [x^n] = n \cdot x^n-1 </math> <br>
<br>
<br>


==3.2 CALCULATING LIMITS USING THE LIMIT LAWS ==
==3.2 CALCULATING LIMITS USING THE LIMIT LAWS ==
<math>\mathbf{New\ rules}</math><br>
<math>\color{Blue}Product\,Rule </math><br>
<math>{\frac{d}{dx}} [f\cdot{g}]= {\frac{d}{dx}}[f]\cdot{g}+{\frac{d}{dx}}[g]\cdot{f}</math><br>
<math>\color{Red}Quotient\,Rule </math><br>
<math>{\frac{d}{dx}}[\frac{f}{g}]=\frac{{\frac{d}{dx}}[f]\cdot{g}-{\frac{d}{dx}}[g]\cdot{f}}{g^2}</math><br>
<br>
<br>
<math>\mathbf{Examples}</math><br>
<math>\mathbf{Ex.1}</math><br>
If <math>f(x)=x\cdot{e^x}</math><br>
<math>f^\prime(x)=1\cdot{e^x}+x\cdot{e^x}</math><br>
<math>f^\prime(x)= e^x(1+x)</math><br>
<br>
<math>\mathbf{Ex.2}</math><br>
If <math>f(t)=\sqrt{t}(a+bt)</math><br>
<math>f^\prime(t)=\frac{1}{2\sqrt{t}}(a+bt)+t\sqrt{t}(b)</math><br>
<math>\mathbf{Ex.3}</math><br>
If <math>f(x)=\sqrt{x}\cdot{g(x)}</math><br>
<math>g(4)=2</math><br>
<math>g^\prime(4)=3</math><br>
<math>f^\prime(x)=\frac{1}{2\sqrt{x}}\cdot{g(x)}+\sqrt{x}\cdot{g^\prime(x)}</math><br>
<math>f^\prime(x)=\frac{1}{4}\cdot{2}+{2}\cdot{3}</math><br>
<math>f^\prime(x)=6.5</math><br>
<math>\mathbf{Ex.4}</math><br>
If <math>y=\frac{x^2+x-2}{x^3+6}</math><br>
<math>y^\prime=\frac{(x^3+6)(2x+1)-(x^2+x-2)(3x^2)}{(x^3+6)^2}</math><br>
<math>y^\prime=\frac{(2x^4+x^3+12x+6)-(3x^4+3x^3-6x)}{(x^3+6)^2}</math><br>
<math>y^\prime=\frac{-x^4-2x^3+6x+12x+6}{(x^3+6)^2}</math><br>

Latest revision as of 22:23, 30 March 2023

Section 1
Section 2

3.1 THE LIMIT OF A FUNCTION













3.2 CALCULATING LIMITS USING THE LIMIT LAWS











If





If



If







If