2024/G9/12: Difference between revisions

From Mr. V Wiki Math
< 2024‎ | G9
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 11: Line 11:
<math>\color{Green}Quotient\,Rule </math><br>
<math>\color{Green}Quotient\,Rule </math><br>
<math>{\frac{d}{dx}}[\frac{f}{g}]=\frac{{\frac{d}{dx}}[f]\cdot{g}-{\frac{d}{dx}}[g]\cdot{f}}{g^2}</math><br>
<math>{\frac{d}{dx}}[\frac{f}{g}]=\frac{{\frac{d}{dx}}[f]\cdot{g}-{\frac{d}{dx}}[g]\cdot{f}}{g^2}</math><br>
<math>\mathbf{\color{Purple}{Examples}}</math><br>
<math>\mathbf{Ex.1}</math><br>  
<math>\mathbf{Ex.1}</math><br>  
<math>if\,f(x)=x\cdot{e^x}</math><br>
<math>if\,f(x)=x\cdot{e^x}</math><br>
Line 23: Line 24:
<math>f^\prime(x)=\frac{1}{2\sqrt{x}}\cdot{g(x)}+\sqrt{x}\cdot{g^\prime(x)}</math><br>
<math>f^\prime(x)=\frac{1}{2\sqrt{x}}\cdot{g(x)}+\sqrt{x}\cdot{g^\prime(x)}</math><br>
<math>\mathbf{Ex.4}</math><br>
<math>\mathbf{Ex.4}</math><br>
<math>y=\frac{x^2+x-2}{x^3+6}</math><br>
<math>y=\frac{\color{Blue}{x^2+x-2}}{\color{Red}{x^3+6}}</math><br>
<math>{\frac{d}{dx}}=y^\prime=\frac{(2x+1)(x^3-6)-(x^2+x-2)(3x^2)}{(x^3+6)^2}</math><br>
<math>{\frac{d}{dx}}=y^\prime=\frac{(2x+1)(x^3-6)-\color{Blue}{(x^2+x-2)}(3x^2)}{\color{Red}{(x^3+6)^2}}</math><br>
<math>=\frac{(2x^4+x^4+x^3+12x+6-[3x^4+3x^2-6x^2]}{(x^3+6)^2}</math><br>
<math>=\frac{(2x^4+x^4+x^3+12x+6-[3x^4+3x^2-6x^2]}{(x^3+6)^2}</math><br>
<math>=\frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}</math><br>
<math>=\frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}</math><br>
<math>\mathbf{Ex.5}</math><br>
<math>y=\frac{e^x}{1+x^2}\,(1,\frac{e}{2})\,</math><br>
<math>{\frac{d}{dx}}=\frac{e^x\cdot(1+x^2)-e^x(2x)}{(1+x^2)^2}</math><br>
<math>{\frac{d}{dx}}|_{x=1}\frac{e(1+1)-e^\prime(2)}{(1+1)^2}=\frac{2e-2e}{2^2}=\frac{0}{4}=0</math>

Latest revision as of 16:17, 30 March 2023