2024/G2/2: Difference between revisions

From Mr. V Wiki Math
< 2024‎ | G2
Jump to navigation Jump to search
(Created page with "==2.2 THE LIMIT OF A FUNCTION == Notes go here for 2.2... example:<br> <math>\lim_{z\to z_0} f(z)=f(z_0)</math> ==2.3 CALCULATING LIMITS USING THE LIMIT LAWS == ==2.5 CONTINUITY == ==2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES == ==2.7 DERIVATIVES AND RATES OF CHANGE == ==2.8 THE DERIVATIVE AS A FUNCTION ==")
 
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
==2.2 THE LIMIT OF A FUNCTION ==
==2.2 THE LIMIT OF A FUNCTION ==
Notes go here for 2.2... example:<br>
Notes go here for 2.2... example:<br>
<math>\lim_{z\to z_0} f(z)=f(z_0)</math>
<math>\lim_{z\to z} [f(x) g(x]) = c \cdot[ \lim_{x\to a} f(x) ] </math>
===Limits are ALWAYS near the number, NEVER on the number.===


==2.3 CALCULATING LIMITS USING THE LIMIT LAWS ==
==2.3 CALCULATING LIMITS USING THE LIMIT LAWS ==
<math> \lim_{x\to a} = c \cdot [\lim_{x\to a} f(x)] </math><br>


==2.5 CONTINUITY ==
==2.5 CONTINUITY ==
- A fraction is <u>continuous</u> at a number "a" if the <math> \lim_{x\to a} f(x) = f(a) </math><br>
1. <math> \lim_{x\to a} f(x) </math> Exist <br>
2. f(a) Exist <br>
Ex. 2 <br>
a) <math> f(x) = {\frac{x^(2)-x-2}{x-2}} x=2 </math><br>
b) <math> f(x) = \begin{cases}
{\frac{1}{x^2}}, & \text{if }x\text{ is ≠ 0} \\
1, & \text{if }x\text{ is = 0}
\end{cases} </math><br>
c) <math> f(x) = \begin{cases}
{\frac{x^(2)-x-2}{x-2}}, & \text{if }x\text{ is ≠ 2} \\
1, & \text{if }x\text{ is = 2}
\end{cases} </math><br>
          <math> \lim_{x\to 2} {\frac{x^(2)-x-2}{x-2}} = \lim_{x\to 2} {\frac{(x-2)(x+1)}{(x-2)}} = x+1 = 3 </math><br>
                                      <math> = (2)+1=3 </math><br>


==2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ==
==2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ==
Horizontal Asymptote or H.A
<br>
<math> f(x)=\lim_{x \to \infty}\frac{x^2-1}{x^2+1} =\lim_{x \to \infty}\frac{x^2-1}{x^2+1}\cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}=\lim_{x \to \infty}\frac{1-\frac{1}{x^2}}{1+\frac{1}{x^2}}=\frac{1-0}{1+0}=1  </math><br>
This ultimately means that the equation will APPROACH TO ONE it will not ever be on one.
<br>
<math>\lim_{x \to \infty}\frac{1}{x}=0 \lim_{x \to -\infty}\frac{1}{x}=0 </math><br>
<math>\lim_{x \to \infty}\frac{3x^2-x-2}{5x^2+4x+1}=\lim_{x \to \infty}(\frac{3x^2-x-2}{5x^2+4x+1})\cdot\frac{\frac{1}{x^2}}{\frac{1}{x^2}}=\lim_{x \to \infty}\frac{3-\frac{1}{x}-\frac{2}{x^2}}{5+\frac{4}{x}+\frac{1}{x^2}}=\frac{3-(0)-(0)}{5+(0)+(0)}=\frac{3}{5}</math><br>
V.A or a vertical asymptote is when the function becomes infinity such as
<math>\lim_{x \to c}f(x)=\infty</math><br>


==2.7 DERIVATIVES AND RATES OF CHANGE ==
==2.7 DERIVATIVES AND RATES OF CHANGE ==
To find the Tangent Line we use <math>  \lim_{h \to 0}\frac{f(x+h)-f(x)}{h}
</math><br> We later apply the points on which we want to find the slope.
<math>f(x)=x^2 f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}= \lim_{h\to 0}\frac{(x+h)^2-x^2}{h}= \lim_{h \to 0}\frac{x^2+2xh+h^2-x^2)}{h}=\lim_{h\to 0}\frac{h^2+2xh}{h}= \lim_{h\to 0}\frac{(\cancel{h})(h+2x)}{\cancel{h}} </math><br> <math>= \lim_{h \to 0}h+2x=(0)+2x </math><br>


==2.8 THE DERIVATIVE AS A FUNCTION ==
==2.8 THE DERIVATIVE AS A FUNCTION ==
<math>{\frac{d}{dx}} [c] = 0 </math> <br>
<math>{\frac{d}{dx}} [c\cdot f(x)] = c\cdot{\frac{d}{dx}} [f(x)] </math> <br>
<math>{\frac{d}{dx}} [f(x)\pm g(x)] = {\frac{d}{dx}} [f(x)] \pm {\frac{d}{dx}} [g(x)] </math> <br>
<math> {\frac{d}{dx}} [x^n] = n \cdot x^{(n-1)} </math> <br>
<math>{\frac{d}{dx}} [a^x] = \ln(a)a^x </math><br>
<math> {\frac{d}{dx}} [e^x] = e^x </math><br>

Latest revision as of 17:45, 19 April 2023

2.2 THE LIMIT OF A FUNCTION

Notes go here for 2.2... example:

Limits are ALWAYS near the number, NEVER on the number.

2.3 CALCULATING LIMITS USING THE LIMIT LAWS


2.5 CONTINUITY

- A fraction is continuous at a number "a" if the

1. Exist
2. f(a) Exist
Ex. 2

a)

b)

c)

         



2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES

Horizontal Asymptote or H.A

This ultimately means that the equation will APPROACH TO ONE it will not ever be on one.


V.A or a vertical asymptote is when the function becomes infinity such as

2.7 DERIVATIVES AND RATES OF CHANGE

To find the Tangent Line we use
We later apply the points on which we want to find the slope.

2.8 THE DERIVATIVE AS A FUNCTION