7.1 Integration By Parts/28: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Tag: Manual revert
 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math> \int_{1}^{2}\frac{(\ln{x})^2}{x^3} </math>
<math> \int_{1}^{2}\frac{(\ln{x})^2}{x^3} </math>


<math> u = \ln{x} \qquad dv = \frac{1}{x^3} </math> <br><br>
<math> u = \ln^2{x} \qquad dv = \frac{1}{x^3} </math> <br><br>
<math> du = \frac{1}{x} \qquad v = -\frac{1}{2x^2} </math>
<math> du = \frac{2\ln{(x)}}{x} \qquad v = -\frac{1}{2x^2} </math>


<math>
<math>
\begin{align}
\begin{align}
\int_{1}^{2}\frac{\ln{x}^2}{x^3} & = -\frac{\ln^2{(x)}}{2x^2} - \int-\frac{\ln{(x)}}{x^3} \\[2ex]
\int_{1}^{2}\frac{\ln{x}^2}{x^3} = -\frac{\ln^2{(x)}}{2x^2} - \int-\frac{\ln{(x)}}{x^3} & = -\frac{\ln^2{(x)}}{2x^2} + \int\frac{\ln{(x)}}{x^3} \\[2ex]


& = -\frac{\ln{(x)}}{2x^2} - \frac{1}{2}\int\frac{1}{x^3} \\[2ex]
& u = \ln{(x)} \qquad dv = \frac{1}{x^3} \\[2ex]
& = -\frac{\ln{(x)}}{2x^2} - \frac{1}{4x^2}
& du = \frac{1}{x} \qquad v = -\frac{1}{2x^2} \\[2ex]
 
 
& = -\frac{\ln^2{(x)}}{2x^2} - \frac{\ln{(x)}}{2x^2} - \int-\frac{1}{2x^3} \\[2ex]
& = -\frac{\ln^2{(x)}}{2x^2} - \frac{\ln{(x)}}{2x^2} - \frac{1}{2}\int\frac{1}{x^3} \\[2ex]
& = -\frac{\ln^2{(x)}}{2x^2} -\frac{\ln{(x)}}{2x^2} - \frac{1}{4x^2} \bigg|_{1}^{2} \\[2ex]
& = -\frac{\ln^2{(2)}}{8} -\frac{\ln{(2)}}{8} - \frac{3}{16} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 22:40, 16 December 2022