7.1 Integration By Parts/24: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Blanked the page)
Tag: Blanking
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
\int u\,dv= u\cdot v -\int v\, du
</math>


<math>
\begin{align}
&\int_{0}^{\pi}\underbrace{x^3\cos(x)}_{
\begin{aligned}
u&=x^3 \quad \quad dv=\cos(x) \\
dv&=3x^2 \quad \quad v=\sin(x)
\end{aligned}}
\,dx =x^3\sin(x)-\int_{0}^{\pi} \underbrace{3x^2\sin(x)}_{
\begin{aligned}
u&=3x^2 \quad \quad dv=\sin(x) \\
du&=6x \quad \quad v=-\cos(x)
\end{aligned}}
\,dx= x^3\sin(x)-\bigg[3x^2-\cos(x)-\int_{0}^{\pi}-6x\cos(x)\,dx\bigg]\\
=&x^3\sin(x)-3x^2\cos(x)-\int_{0}^{\pi}\underbrace{6x\cos(x)}_{
\begin{aligned}
u&=6x \quad \quad dv=cos(x) \\
du&=6 \quad \quad v=sin(x)
\end{aligned}}
=x^3\sin(x)+3x^2\cos(x)-\bigg[6x\sin(x)-\int_{0}^{\pi} 6\sin(x)\,dx\bigg]= x^3sin(x)+3x^2\cos(x)-6x\sin(x)-6\cos(x)\bigg|_{0}^{\pi}
\end{align}
</math>
<math>
\begin{align}
&=[(\pi^3\cdot\sin(\pi)+3(\pi)^2\cdot\cos(\pi)-6(\pi)\cdot\sin(\pi)-6\cos(\pi))-(0^3\cdot\sin(0)+3(0)^2\cdot\cos(0)-6(0)\cdot\sin(0)-6\cos(0))] \\
&=[(\pi\cdot 0 +3\pi^2 \cdot -1 -6 \cdot -1)+6 =-3\pi^2+6+6 = -3\pi^2+12 = -17.60
\end{align}
</math>

Latest revision as of 20:31, 1 December 2022