7.1 Integration By Parts/49: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
Prove
Prove
<math>
<math>
\int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx
\int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx  
 
</math>
</math> \\[2ex]


Note:
Note:
Line 59: Line 58:


Bring down:  
Bring down:  
<math>
<math>
\begin{align}
\begin{align}

Latest revision as of 04:36, 30 November 2022

Prove

Note:

Solving for

Bring down: