7.1 Integration By Parts/49: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Prove | Prove | ||
<math> | <math> | ||
\int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx | \int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx | ||
</math> | |||
Note: | |||
<math> | |||
\begin{align} | |||
\tan^{2}(x) = \sec^{2}(x)-1 | |||
\end{align} | |||
</math> | </math> | ||
Line 43: | Line 49: | ||
</math> | </math> | ||
< | <math> | ||
\begin{align} | \begin{align} | ||
Line 51: | Line 57: | ||
</math> | </math> | ||
< | Bring down: | ||
<math> | |||
\begin{align} | \begin{align} | ||
\int_{}^{}\tan^{n-2}(x)dx | -\int_{}^{}\tan^{n-2}(x)dx | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
< | <math> | ||
\begin{align} | \begin{align} | ||
= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx | = \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 04:36, 30 November 2022
Prove
Note:
Solving for
Bring down: