7.1 Integration By Parts/49: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
Prove
Prove
<math>
<math>
\int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx
\int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx  
</math>


Note:
<math>
\begin{align}
\tan^{2}(x) = \sec^{2}(x)-1
\end{align}
</math>
</math>


Line 43: Line 49:
</math>
</math>


</math>
<math>
\begin{align}
\begin{align}


Line 51: Line 57:
</math>
</math>


</math>
Bring down:
<math>
\begin{align}
\begin{align}


\int_{}^{}\tan^{n-2}(x)dx
-\int_{}^{}\tan^{n-2}(x)dx


\end{align}
\end{align}
</math>
</math>


</math>
<math>
\begin{align}
\begin{align}


= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx
= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx


\end{align}
</math>
Note:
<math>
\begin{align}
\tan^{2}(x) = \sec^{2}(x)-1
\end{align}
\end{align}
</math>
</math>

Latest revision as of 04:36, 30 November 2022

Prove

Note:

Solving for

Bring down: