7.1 Integration By Parts/50: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 39: | Line 39: | ||
\begin{align} | \begin{align} | ||
+(n-2)\int_{}^{} \sec^{2}(x)dx \quad &&&+(n-2)\int_{}^{} \sec^{2}(x)dx | &+(n-2)\int_{}^{} \sec^{2}(x)dx \quad &&&+(n-2)\int_{}^{} \sec^{2}(x)dx | ||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
(n-1)\int_{}^{} \sec^{n}(x)dx= \sec^{2}(x)\tan(x) + (n-2) \int_{}^{} \sec^{n-2}(x)dx \\[2ex] | |||
&= \frac{\sec^{n-2}(x) \tan(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx \\[2ex] | |||
\end{align} | |||
</math> | |||
Note: | |||
<math> | |||
\begin{align} | |||
\tan^{2}(x) = \sec^{2}(x)-1 | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 04:07, 30 November 2022
Prove
Note: