7.1 Integration By Parts/7: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 2: Line 2:
\begin{align}
\begin{align}
&=\int x^2 sin (\pi x)\\[2ex]
&=\int x^2 sin (\pi x)\\[2ex]
U=x^2 ,\\[x] du= 2xdx ,\\[x]  dv= sin(\pi x)dx ,\\[x] v=-\frac{1}{\pi}cos(\pi x) \\[2ex]
U=x^2 ,\\[2ex] du= 2xdx ,\\[2ex]  dv= sin(\pi x)dx ,\\[2ex] v=-\frac{1}{\pi}cos(\pi x) \\[2ex]
&=-\frac{x^2}{\pi}cos(\pi x) +\frac{2}{\pi} \int x cos (\pi x) dx\\[2ex]
&=-\frac{x^2}{\pi}cos(\pi x) +\frac{2}{\pi} \int x cos (\pi x) dx\\[2ex]
U=x,\\[x]  du= dx,\\[x] dv= cos(\pi x) dx,\\[x] v=\frac{1}{\pi}sin (\pi x) \\[2ex]
U=x,\\[2ex]  du= dx,\\[2ex] dv= cos(\pi x) dx,\\[2ex] v=\frac{1}{\pi}sin (\pi x) \\[2ex]
&=-\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi}\int sin (\pi x) dx]\\[2ex]
&=-\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi}\int sin (\pi x) dx]\\[2ex]
&= -\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi^2}cos(\pi x) ] +c\\[2ex]
&= -\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi^2}cos(\pi x) ] +c\\[2ex]
\end{align}
\end{align}
</math>
</math>

Latest revision as of 00:19, 30 November 2022