From Mr. V Wiki Math
|
|
| Line 43: |
Line 43: |
|
| |
|
|
| |
|
| <math>
| |
|
| |
| \begin{align}
| |
|
| |
|
|
| |
| \int_{0}^{\frac{\pi}{2}} sin^5(x) dx \\[2ex]
| |
|
| |
| &= \frac{5-1}{5} \int_{0}^{\frac{\pi}{2}} sin^3(x) dx \\[2ex]
| |
| & u= cos(x) \\[2ex]
| |
| & du= -sin(x) \\[2ex]
| |
| & dx= \frac{du}{-sin(x)} \\[2ex]
| |
| & \int sin^3(x) dx \\[2ex]
| |
| &= \int (1-cos^2(x)) sin(x) dx \\[2ex]
| |
| &= \int (1-u^2)sin(x) \cdot \frac{du}{-sin(x)} \\[2ex]
| |
| &= -\int 1-u^2 du \\[2ex]
| |
| &= \frac{4}{5} [-u + \frac{1}{3}^3(x)] \\[2ex]
| |
| &= \frac{4}{5} [-cos(x) + \frac{1}{3} cos^3(x)] \\[2ex]
| |
| &= \frac{4}{5} [-cos(\frac{\pi}{2}) + \frac{1}{3} cos^3 (\frac{\pi}{2}) - (-cos(0) + \frac{1}{3} cos^3 (0)) \\[2ex]
| |
| &= \frac{4}{5} [(-1)(0) + \frac{1}{3} (0)^3 - ((-1)(1) +\frac{1}{3} cos^3(1) \\[2ex]
| |
|
| |
| &= \frac{4}{5} [-(-1+ \frac{1}{3}(1)] \\[2ex]
| |
| &= \frac{4}{5}[\frac{2}{3}] \\[2ex]
| |
| &= \frac{8}{15} \\[2ex]
| |
|
| |
|
| |
|
| |
|
| |
|
| |
| \end{align}
| |
|
| |
| </math>
| |
|
| |
|
|
| |
|
| Line 91: |
Line 61: |
| </math> | | </math> |
|
| |
|
| | <math> |
|
| |
|
| ----
| |
| \begin{align} | | \begin{align} |
|
| |
|
| Line 98: |
Line 68: |
| &= \frac{4}{5}\int_{0}^{\frac{\pi}{2}} (1-cos^2(x)) sin(x) dx \\[2ex] | | &= \frac{4}{5}\int_{0}^{\frac{\pi}{2}} (1-cos^2(x)) sin(x) dx \\[2ex] |
| &= -\int_{1}^{0} (1-u^2)\cdot du \\[2ex] | | &= -\int_{1}^{0} (1-u^2)\cdot du \\[2ex] |
| &= \frac{4}{5} \left[-u + \frac{u^3}{3}\right]\bigg|_{0}^{1} \\[2ex] | | &= \frac{4}{5} \left[u - \frac{u^3}{3}\right]\bigg|_{0}^{1} \\[2ex] |
|
| |
|
|
| |
|
| Line 105: |
Line 75: |
| & dx= \frac{du}{-sin(x)} \\[2ex] | | & dx= \frac{du}{-sin(x)} \\[2ex] |
| & \int sin^3(x) dx \\[2ex] | | & \int sin^3(x) dx \\[2ex] |
| &= -\int 1-u^2 du \\[2ex]
| | &= \frac{4}{5} [1-\frac{1}{3}] \\[2ex] |
| &= \frac{4}{5} [-cos(x) + \frac{1}{3} cos^3(x)] \\[2ex] | | &= \frac{8}{15} |
| &= \frac{4}{5} [-cos(\frac{\pi}{2}) + \frac{1}{3} cos^3 (\frac{\pi}{2}) - (-cos(0) + \frac{1}{3} cos^3 (0)) \\[2ex] | |
| &= \frac{4}{5} [(-1)(0) + \frac{1}{3} (0)^3 - ((-1)(1) +\frac{1}{3} cos^3(1) \\[2ex]
| |
|
| |
|
| &= \frac{4}{5} [-(-1+ \frac{1}{3}(1)] \\[2ex]
| |
| &= \frac{4}{5}[\frac{2}{3}] \\[2ex]
| |
| &= \frac{8}{15} \\[2ex]
| |
|
| |
|
| \end{align} | | \end{align} |
| | |
| | </math> |
Latest revision as of 00:30, 30 November 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \int_{0}^{\frac{\pi}{2}} sin^n(x) dx = \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2} (x) dx \\[2ex] &= -\frac{1}{n} cos(x) sin^{n-1} (x) + \frac{n-1}{n} \bigg|_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] &= -\frac{1}{n} cos(\frac{\pi}{2}) sin^{n-1} (\frac{\pi}{2})+ \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] &= -\frac{1}{n} (0) (1) + \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] &= \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] \end{align} }