7.1 Integration By Parts/50: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(40 intermediate revisions by the same user not shown)
Line 1: Line 1:
Prove
Prove
<math>
<math>
\int_{}^{} \sec^{n}x = \frac{\tanx}{n-1}  
\int_{}^{} \sec^{n}(x)dx = \frac{\tan(x) \cdot \sec^{n-2}(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx
</math>
</math>


<math>
<math>
\int_{}^{} \left(\ln(x)^{n}\right)dx
\int_{}^{} \sec^{n}(x)dx = \int_{}^{} \sec^{2}(x) \cdot \sec^{n-2}(x) dx
</math>
</math>


<math>
<math>
\begin{align}
\begin{align}
&u = \ln(x)^{n} \quad dv= 1dx \\[2ex]
&u = \sec^{n-2}(x) \quad &dv= \sec^{2}(x)dx \\[2ex]
&du =1dx       \quad v=x \\[2ex]
&du = (n-2)\sec^{n-3} \cdot \sec(x) \tan(x) dx       \quad &v= \tan(x) \\[2ex]


\end{align}
\end{align}
Line 19: Line 19:
\begin{align}
\begin{align}


\int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex]
\int_{}^{} \sec^{2}(x) \cdot \sec^{n-2}(x) dx &= \sec^{n-2}(x) \cdot \tan(x) - \int_{}^{} \left[(n-2)\sec^{n-3}(x) \cdot \sec(x)\tan(x)\right]\cdot \tan(x)dx \\[2ex]
&= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex]
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex]


&= \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot \tan^{2}(x)\right]dx \\[2ex]
&= \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n-2}(x) \cdot [\sec^{2}(x)-1]dx \\[2ex]
&= \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n}(x) - \sec^{n-2}(x)\right]dx \\[2ex]


\int_{}^{} \sec^{n}x = \frac{\tanx \sec^{n-2}x}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}xdx
\end{align}
</math>
 
<math>
\begin{align}
 
\int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx
 
\end{align}
</math>
 
<math>
\begin{align}
 
&+(n-2)\int_{}^{} \sec^{2}(x)dx                                                  \quad &&&+(n-2)\int_{}^{} \sec^{2}(x)dx
 
\end{align}
</math>
 
<math>
\begin{align}
 
(n-1)\int_{}^{} \sec^{n}(x)dx= \sec^{2}(x)\tan(x) + (n-2) \int_{}^{} \sec^{n-2}(x)dx \\[2ex]
&= \frac{\sec^{n-2}(x) \tan(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx \\[2ex]
 
\end{align}
</math>
 
Note:
<math>
\begin{align}
\tan^{2}(x) = \sec^{2}(x)-1
\end{align}
</math>

Latest revision as of 04:07, 30 November 2022

Prove

Note: