7.1 Integration By Parts/50: Difference between revisions
Jump to navigation
Jump to search
(Created page with "Prove <math> \int_{}^{} \sec^{n}x = \frac{\tanx \cdot \sec^{n-2}x}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}xdx </math> <math> \int_{}^{} \left(\ln(x)^{n}\right)dx </math> <math> \begin{align} &u = \ln(x)^{n} \quad dv= 1dx \\[2ex] &du =1dx \quad v=x \\[2ex] \end{align} </math> <math> \begin{align} \int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(...") |
No edit summary |
||
(43 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Prove | Prove | ||
<math> | <math> | ||
\int_{}^{} \sec^{n}x = \frac{\ | \int_{}^{} \sec^{n}(x)dx = \frac{\tan(x) \cdot \sec^{n-2}(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx | ||
</math> | |||
<math> | |||
\int_{}^{} \sec^{n}(x)dx = \int_{}^{} \sec^{2}(x) \cdot \sec^{n-2}(x) dx | |||
</math> | </math> | ||
<math> | <math> | ||
\ | \begin{align} | ||
&u = \sec^{n-2}(x) \quad &dv= \sec^{2}(x)dx \\[2ex] | |||
&du = (n-2)\sec^{n-3} \cdot \sec(x) \tan(x) dx \quad &v= \tan(x) \\[2ex] | |||
\end{align} | |||
</math> | </math> | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
& | |||
& | \int_{}^{} \sec^{2}(x) \cdot \sec^{n-2}(x) dx &= \sec^{n-2}(x) \cdot \tan(x) - \int_{}^{} \left[(n-2)\sec^{n-3}(x) \cdot \sec(x)\tan(x)\right]\cdot \tan(x)dx \\[2ex] | ||
&= \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n-2}(x) \cdot \tan^{2}(x)\right]dx \\[2ex] | |||
&= \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n-2}(x) \cdot [\sec^{2}(x)-1]dx \\[2ex] | |||
&= \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \left[\sec^{n}(x) - \sec^{n-2}(x)\right]dx \\[2ex] | |||
\end{align} | \end{align} | ||
Line 20: | Line 31: | ||
\begin{align} | \begin{align} | ||
\int_{}^{} \ | \int_{}^{} \sec^{n}(x)dx = \sec^{n-2}(x) \cdot \tan(x) - (n-2)\int_{}^{} \sec^{n}(x)dx + (n-2) \int_{}^{}\sec^{n-2}(x)dx | ||
&= x \ | \end{align} | ||
</math> | |||
<math> | |||
\begin{align} | |||
&+(n-2)\int_{}^{} \sec^{2}(x)dx \quad &&&+(n-2)\int_{}^{} \sec^{2}(x)dx | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
(n-1)\int_{}^{} \sec^{n}(x)dx= \sec^{2}(x)\tan(x) + (n-2) \int_{}^{} \sec^{n-2}(x)dx \\[2ex] | |||
&= \frac{\sec^{n-2}(x) \tan(x)}{n-1} + \frac{n-2}{n-1} \int_{}^{} \sec^{n-2}(x)dx \\[2ex] | |||
\end{align} | |||
</math> | |||
Note: | |||
<math> | |||
\begin{align} | |||
\tan^{2}(x) = \sec^{2}(x)-1 | |||
\end{align} | |||
</math> |
Latest revision as of 04:07, 30 November 2022
Prove
Note: