7.1 Integration By Parts/49: Difference between revisions
Jump to navigation
Jump to search
(Created page with "Prove <math> \int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{tan^{n-1}x}{n-1} - \int_{}^{} \tan^{n-2}xdx </math> <math> \int_{}^{} \left(\ln(x)^{n}\right)dx </math> <math> \begin{align} &u = \ln(x)^{n} \quad dv= 1dx \\[2ex] &du =1dx \quad v=x \\[2ex] \end{align} </math> <math> \begin{align} \int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \rig...") |
No edit summary |
||
(49 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Prove | Prove | ||
<math> | <math> | ||
\int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{tan^{n-1}x}{n-1} - \int_{}^{} \tan^{n-2}xdx | \int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx | ||
</math> | |||
Note: | |||
<math> | |||
\begin{align} | |||
\tan^{2}(x) = \sec^{2}(x)-1 | |||
\end{align} | |||
</math> | |||
<math> | |||
\int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}(x) dx | |||
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}xdx | |||
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) -\int_{}^{}\tan^{n-2}(x)dx | |||
</math> | |||
Solving for | |||
<math> | |||
\int_{}^{} (\sec^{2}x)(\tan^{n-2}x) | |||
</math> | |||
<math> | |||
\begin{align} | |||
&u = \tan^{n-2}x \quad &dv= \sec^{2}(x)dx \\[2ex] | |||
&du = (n-2)\tan^{n-3}(x) \cdot \sec^{2}(x)dx \quad &v= \tan(x) \\[2ex] | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx = \tan^{n-2}(x) \cdot \tan(x) - \int_{}^{} (n-2)\tan^{n-3}(x)\sec^{2} \cdot \tan(x)dx \\[2ex] | |||
= \tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx \\[2ex] | |||
\tan^{n-1}(x) - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex] | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
&&&&&&&&&&&+\int_{}^{}(n-2)\tan^{n-2}(x) \cdot \sec^{2}(x)dx \quad &&&&&&+\int_{}^{}(n-2)\tan^{n-2}(x) \cdot \sec^{2}(x)dx | |||
\end{align} | |||
</math> | </math> | ||
<math> | <math> | ||
\ | \begin{align} | ||
\frac{\tan^{n-1}(x)}{n-1} = \frac{(n-1)}{n-1} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx | |||
\end{align} | |||
</math> | </math> | ||
Bring down: | |||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
-\int_{}^{}\tan^{n-2}(x)dx | |||
\end{align} | \end{align} | ||
Line 20: | Line 69: | ||
\begin{align} | \begin{align} | ||
= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 04:36, 30 November 2022
Prove
Note:
Solving for
Bring down: