7.1 Integration By Parts/49: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "Prove <math> \int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{tan^{n-1}x}{n-1} - \int_{}^{} \tan^{n-2}xdx </math> <math> \int_{}^{} \left(\ln(x)^{n}\right)dx </math> <math> \begin{align} &u = \ln(x)^{n} \quad dv= 1dx \\[2ex] &du =1dx \quad v=x \\[2ex] \end{align} </math> <math> \begin{align} \int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex] &= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \rig...")
 
No edit summary
 
(49 intermediate revisions by the same user not shown)
Line 1: Line 1:
Prove
Prove
<math>
<math>
\int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{tan^{n-1}x}{n-1} - \int_{}^{} \tan^{n-2}xdx
\int_{}^{} \left(\tan^{n}(x)\right)dx =\frac{\tan^{n-1}x}{n-1} - \int_{}^{} \left(\tan^{n-2}x\right)dx
</math>
 
Note:
<math>
\begin{align}
\tan^{2}(x) = \sec^{2}(x)-1
\end{align}
</math>
 
<math>
\int_{}^{} \left(\tan^{n}(x)\right)dx = \int_{}^{} \left((\tan^{2}x)(\tan^{n-2}x)\right)dx = \int_{}^{} (\sec^{2}(x)-1)\tan^{n-2}(x) dx
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)-\tan^{n-2}xdx
= \int_{}^{} (\sec^{2}x)(\tan^{n-2}x) -\int_{}^{}\tan^{n-2}(x)dx
 
</math>
 
Solving for
<math>
\int_{}^{} (\sec^{2}x)(\tan^{n-2}x)
</math>
 
<math>
\begin{align}
&u = \tan^{n-2}x \quad &dv= \sec^{2}(x)dx \\[2ex]
&du = (n-2)\tan^{n-3}(x) \cdot \sec^{2}(x)dx        \quad &v= \tan(x) \\[2ex]
 
\end{align}
</math>
 
<math>
\begin{align}
 
\int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx = \tan^{n-2}(x) \cdot \tan(x) - \int_{}^{} (n-2)\tan^{n-3}(x)\sec^{2} \cdot \tan(x)dx \\[2ex]
= \tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx  \\[2ex]
\tan^{n-1}(x)  - \int_{}^{} (n-2)\tan^{n-2}(x)\sec^{2}dx = \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx \\[2ex]
 
\end{align}
</math>
 
<math>
\begin{align}


&&&&&&&&&&&+\int_{}^{}(n-2)\tan^{n-2}(x) \cdot \sec^{2}(x)dx                                      \quad &&&&&&+\int_{}^{}(n-2)\tan^{n-2}(x) \cdot \sec^{2}(x)dx
\end{align}
</math>
</math>


<math>
<math>
\int_{}^{} \left(\ln(x)^{n}\right)dx
\begin{align}
 
\frac{\tan^{n-1}(x)}{n-1} = \frac{(n-1)}{n-1} \int_{}^{} (\sec^{2}x)(\tan^{n-2}x)dx  
 
\end{align}
</math>
</math>


Bring down:
<math>
<math>
\begin{align}
\begin{align}
&u = \ln(x)^{n} \quad dv= 1dx \\[2ex]
 
&du =1dx        \quad v=x \\[2ex]
-\int_{}^{}\tan^{n-2}(x)dx


\end{align}
\end{align}
Line 20: Line 69:
\begin{align}
\begin{align}


\int_{}^{} \left(\ln(x)^{n}\right)dx &= x \ln(x)^{n} - \int_{}^{} \left((x \frac{n \ln(x)^{n-1}}{x}) \right)dx \\[2ex]
= \frac{\tan^{n-1}(x)}{n-1} -\int_{}^{}\tan^{n-2}(x)dx
&= x \ln(x)^{n} - \int_{}^{} \left(n \ln(x)^{n-1} \right)dx \\[2ex]
&= x \ln(x)^{n} - n \int_{}^{} \left(\ln(x)^{n-1} \right)dx \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 04:36, 30 November 2022

Prove

Note:

Solving for

Bring down: