7.1 Integration By Parts/54: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
<math> | <math> | ||
y={ | y={ \color{OliveGreen}5\ln(x) }, y={ \color{Red}x\ln(x)} | ||
</math> | </math> | ||
Line 38: | Line 38: | ||
<math> | <math> | ||
{\color{RedOrange}\int_{1}^{5} \left(x\ln(x) \right)dx }= \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx = \frac{1\ln(1)}{2}-\frac{25\ln(5)}{2} -\left(\frac{1}{2}\right) \left( \frac{x^2}{2} \right) \bigg|_{1}^{5} = 0-\frac{25}{2}\ln(5) - | {\color{RedOrange}\int_{1}^{5} \left(x\ln(x) \right)dx }= \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \int_{1}^{5} \left(\frac{x^2}{2x} \right)dx = \frac{x^2\ln(x)}{2}\bigg|_{1}^{5} - \frac{1}{2}\int_{1}^{5} \left(x \right)dx = \frac{1\ln(1)}{2}-\frac{25\ln(5)}{2} -\left(\frac{1}{2}\right) \left( \frac{x^2}{2} \right) \bigg|_{1}^{5} = 0-\frac{25}{2}\ln(5) -\left(\frac{25-1}{4}\right) = \frac{25}{2}\ln(5) - 6 | ||
</math> | </math> |