7.1 Integration By Parts/30: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(29 intermediate revisions by the same user not shown)
Line 14: Line 14:
</math>
</math>


<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr  ~~~ = ~~~  \int_{0}^{1}\frac{r}{2\sqrt{u}}\cdot du  ~~~ = ~~~  \int_{0}^{1}\frac{u-4}{2\sqrt{u}}\cdot du  ~~~ = ~~~  \frac{}{}\frac{1}{2} \int_{0}^{1} \left (\frac{u}{\sqrt{u}} - \frac{4}{\sqrt{u}} \right ) \cdot du  ~~~ = ~~~  </math>
<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr  ~~~ = ~~~  \int_{0}^{1}\frac{r}{2\sqrt{u}}\cdot du  ~~~ = ~~~  \int_{0}^{1}\frac{u-4}{2\sqrt{u}}\cdot du  ~~~ = ~~~  \frac{1}{2} \int_{0}^{1} \left (\frac{u}{\sqrt{u}} - \frac{4}{\sqrt{u}} \right ) \cdot du  ~~~ = ~~~  </math>


<math> \frac{1}{2} \left [ \left (\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right ) - \left ( \frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \right ) \right ]  ~~~ = ~~~  \frac{1}{2} \left [ \left (\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right ) - 4\left ( \frac{u^{\frac{1}{2} }}{\frac{1}{2}} \right )\right ]    ~~~ = ~~~  \frac{u^{\frac{3}{2}}}{3} - 4u^{\frac{1}{2}} </math>
<math> \frac{1}{2} \left [ \left (\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right ) - \left ( \frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \right ) \right ]  ~~~ = ~~~  \frac{1}{2} \left [ \left (\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right ) - 4\left ( \frac{u^{\frac{1}{2} }}{\frac{1}{2}} \right )\right ]    ~~~ = ~~~  \frac{u^{\frac{3}{2}}}{3} - 4u^{\frac{1}{2}} </math>




Now, we need to substitute u back


<math>
<math>\frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} + C </math>
\begin{align}
u &= 4+r^{2} \\[2ex]


\end{align}
 
</math>
 
<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr    ~~~ = ~~~  \left [ \frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} \right ]_{0}^{1} </math>
 
<math> \left [\frac{\left ( 1 ^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 1 ^{2}+4 \right )^{\frac{1}{2}}  \right ]- \left [ \frac{\left ( 0^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 0^{2}+4 \right )^{\frac{1}{2}} \right ] </math>
 
<math> \frac{5^{\frac{3}{2}}}{3}-4\left ( 5 \right )^{\frac{1}{2}}-\left ( \frac{\left ( 4 \right )^{\frac{3}{2}}}{3} - 8\right )      ~~~ = ~~~  \frac{5^{\frac{3}{2}}}{3}-4\sqrt{5}-\frac{4^{\frac{3}{2}}}{3}-8  ~~~\approx~~~0.116 </math>

Latest revision as of 16:46, 13 December 2022



Now, we need to substitute u back