7.1 Integration By Parts/30: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(73 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}} </math> < | <math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr </math> | ||
<math> | |||
\begin{align} | |||
u &= 4+r^{2} | |||
\\[2ex] | |||
r^{2} &= u-4 \\[2ex] | |||
2r\cdot dr &= du \\[2ex] | |||
\end{align} | |||
</math> | |||
<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr ~~~ = ~~~ \int_{0}^{1}\frac{r}{2\sqrt{u}}\cdot du ~~~ = ~~~ \int_{0}^{1}\frac{u-4}{2\sqrt{u}}\cdot du ~~~ = ~~~ \frac{1}{2} \int_{0}^{1} \left (\frac{u}{\sqrt{u}} - \frac{4}{\sqrt{u}} \right ) \cdot du ~~~ = ~~~ </math> | |||
<math> \frac{1}{2} \left [ \left (\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right ) - \left ( \frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \right ) \right ] ~~~ = ~~~ \frac{1}{2} \left [ \left (\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right ) - 4\left ( \frac{u^{\frac{1}{2} }}{\frac{1}{2}} \right )\right ] ~~~ = ~~~ \frac{u^{\frac{3}{2}}}{3} - 4u^{\frac{1}{2}} </math> | |||
Now, we need to substitute u back | |||
<math>\frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} + C </math> | |||
<math> \int_{0}^{1}\frac{r^{3}}{\sqrt{4+r^{2}}}\cdot dr ~~~ = ~~~ \left [ \frac{\left ( r^{2}+4 \right )^{\frac{3}{2}}}{3} - 4\left ( r^{2}+4 \right )^{\frac{1}{2}} \right ]_{0}^{1} </math> | |||
<math> \left [\frac{\left ( 1 ^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 1 ^{2}+4 \right )^{\frac{1}{2}} \right ]- \left [ \frac{\left ( 0^{2}+4 \right )^{\frac{3}{2}}}{3}-4\left ( 0^{2}+4 \right )^{\frac{1}{2}} \right ] </math> | |||
<math> \frac{5^{\frac{3}{2}}}{3}-4\left ( 5 \right )^{\frac{1}{2}}-\left ( \frac{\left ( 4 \right )^{\frac{3}{2}}}{3} - 8\right ) ~~~ = ~~~ \frac{5^{\frac{3}{2}}}{3}-4\sqrt{5}-\frac{4^{\frac{3}{2}}}{3}-8 ~~~\approx~~~0.116 </math> |
Latest revision as of 16:46, 13 December 2022
Now, we need to substitute u back