7.1 Integration By Parts/7: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math> \begin{align} &=\int x^2 sin (\pi x)\\[2ex] & U=x^2 , du= 2xdx , dv= sin(\pi x)dx , v=-\frac{1}{\pi}cos(\pi x) \\[2ex] &=-\frac{x^2}{\pi}cos(\pi x) +\frac{2}{\pi} \int x cos (\pi x) dx\\[2ex] &U=x, du= dx, dv= cos(\pi x) dx, v=\frac{1}{\pi}sin (\pi x) \\[2ex] &=-\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi}\int sin (\pi x) dx]\\[2ex] &= -\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi^2}cos(\pi x...")
 
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
\begin{align}
\begin{align}
&=\int x^2 sin (\pi x)\\[2ex]
&=\int x^2 sin (\pi x)\\[2ex]
& U=x^2 , du= 2xdx ,  dv= sin(\pi x)dx , v=-\frac{1}{\pi}cos(\pi x) \\[2ex]
U=x^2 ,\\[2ex] du= 2xdx ,\\[2ex] dv= sin(\pi x)dx ,\\[2ex] v=-\frac{1}{\pi}cos(\pi x) \\[2ex]
&=-\frac{x^2}{\pi}cos(\pi x) +\frac{2}{\pi} \int x cos (\pi x) dx\\[2ex]
&=-\frac{x^2}{\pi}cos(\pi x) +\frac{2}{\pi} \int x cos (\pi x) dx\\[2ex]
&U=x,  du= dx, dv= cos(\pi x) dx, v=\frac{1}{\pi}sin (\pi x) \\[2ex]
U=x,\\[2ex] du= dx,\\[2ex] dv= cos(\pi x) dx,\\[2ex] v=\frac{1}{\pi}sin (\pi x) \\[2ex]
&=-\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi}\int sin (\pi x) dx]\\[2ex]
&=-\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi}\int sin (\pi x) dx]\\[2ex]
&= -\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi^2}cos(\pi x) ] +c\\[2ex]
&= -\frac{x^2}{\pi}cos(\pi x)+ \frac{2}{\pi}[\frac{x}{\pi}sin(\pi x) - \frac{1}{\pi^2}cos(\pi x) ] +c\\[2ex]
\end{align}
\end{align}
<\math>
</math>

Latest revision as of 00:19, 30 November 2022