7.1 Integration By Parts/45: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math> \begin{align} & \int_{0}^{\frac{\pi}{2}} sin^n(x) dx = \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2} (x) dx \\[2ex] &= -\frac{1}{n} cos(x) sin^{n-1} (x) + \frac{n-1}{n} \bigg|_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] &= -\frac{1}{n} cos(\frac{\pi}{2}) sin^{n-1} (\frac{\pi}{2})+ \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] &= -\frac{1}{n} (0) (1) + \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} sin^{n-2}(x) dx \\[2ex] &...")
 
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 41: Line 41:


</math>
</math>




Line 47: Line 50:
\begin{align}
\begin{align}


& \int_{0}^{\frac{\pi}{2}} sin^{2n+1} (x) dx \\[2ex]
&= \frac{2n+1-1}{2n+1} \int_{0}^{\frac{\pi}{2}} sin^{2n+1-2} (x) dx \\[2ex]
&= \frac{2n}{2n+1} \int_{0}^{\frac{\pi}{2}} sin^{2n-1} (x) dx \\[2ex]
\end{align}
</math>
<math>
\begin{align}
\int_{0}^{\frac{\pi}{2}} sin^5(x) dx &= \frac{5-1}{5} \int_{0}^{\frac{\pi}{2}} sin^3(x) dx \\[2ex]
&= \frac{4}{5}\int_{0}^{\frac{\pi}{2}} (1-cos^2(x)) sin(x) dx \\[2ex]
&= -\int_{1}^{0} (1-u^2)\cdot du \\[2ex]
&= \frac{4}{5} \left[u - \frac{u^3}{3}\right]\bigg|_{0}^{1} \\[2ex]


&\int_{0}^{\frac{\pi}{2}} sin^5(x) dx \\[2ex]


&= \frac{5-1}{5} \int_{0}^{\frac{\pi}{2}} sin^3(x) dx \\[2ex]
& u= cos(x)          \\[2ex]
& u= cos(x)          \\[2ex]
&  du= -sin(x) \\[2ex]
&  du= -sin(x) \\[2ex]
&  dx= \frac{du}{-sin(x)} \\[2ex]
&  dx= \frac{du}{-sin(x)} \\[2ex]
& \int sin^3(x) dx \\[2ex]
& \int sin^3(x) dx \\[2ex]
&= \int (1-cos^2(x)) sin(x) dx \\[2ex]
&= \frac{4}{5} [1-\frac{1}{3}] \\[2ex]
&= \int (1-u^2)sin(x) \cdot \frac{du}{-sin(x)} \\[2ex]
&= -\int 1-u^2 du \\[2ex]
&= \frac{4}{5} [-u + \frac{1}{3}^3(x)] \\[2ex]
&= \frac{4}{5} [-cos(x) + \frac{1}{3} cos^3(x)] \\[2ex]
&= \frac{4}{5} [-cos(\frac{\pi}{2}) + \frac{1}{3} cos^3 (\frac{\pi}{2}) - (-cos(0) + \frac{1}{3} cos^3 (0)) \\[2ex]
&= \frac{4}{5} [(-1)(0) + \frac{1}{3} (0)^3 - ((-1)(1) +\frac{1}{3} cos^3(1) \\[2ex]
 
&= \frac{4}{5} [-(-1+ \frac{1}{3}(1)]
&= \frac{4}{5}[\frac{2}{3}]
&= \frac{8}{15}
&= \frac{8}{15}





Latest revision as of 00:30, 30 November 2022