7.1 Integration By Parts/43: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math> \text{Prove with the reduction formula that} \int\sin^2(x)dx = \frac{x}{2} - \frac{sin(2x)}{4} + C </math> <br>
<math> \text{reduction formula:} \int\sin^ndx= -\frac{1}{n}\cos(x)\sin^{n-1}(x) + \frac{n-1}{n}\int\sin^{n-2}(x)dx </math> <br>
<math>
\begin{align}
\begin{align}
\int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx </math> \\[2ex]
 
\int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx \\[2ex]
&= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex]
&= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex]
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex]
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex]
\end{align}
\end{align}
<\math>
</math>
 
<math> \text{Now evaluate}\int\sin^4(x)dx </math>
 
<math>
\begin{align}
\int\sin^4(x)dx &= - \frac{1}{4}\cos(x)\sin^3(x) + \frac{3}{4} \int\sin^2(x)dx \\[2ex]
&= - \frac{1}{4}\cos(x)\sin^3(x) + \frac{3}{4}(-\frac{1}{4}\sin(2x) + \frac{x}{2}) \\[2ex]
&= - \frac{1}{4}\cos(x)\sin^3(x) - \frac{3}{16}\sin(2x) + \frac{3}{8}x + c \\[2ex]
\end{align}
</math>

Latest revision as of 02:16, 29 November 2022