7.1 Integration By Parts/43: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(15 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> \text{Prove with the reduction formula that} \int\sin^2(x)dx = \frac{x}{2} - \frac{sin(2x)}{4} + C </math> <br> | |||
<math> \text{reduction formula:} \int\sin^ndx= -\frac{1}{n}\cos(x)\sin^{n-1}(x) + \frac{n-1}{n}\int\sin^{n-2}(x)dx </math> <br> | |||
<math> | |||
\begin{align} | \begin{align} | ||
\int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx | |||
\int\sin^2(x)dx &= - \frac{1}{2}\cos(x) \cdot \sin^{2-1}x + \frac{2-1}{2} \int\sin^{0}(x)dx \\[2ex] | |||
&= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex] | &= -\frac{1}{2}\cos(x)\sin(x) + \frac{1}{2}x + c \\[2ex] | ||
&= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex] | &= -\frac{1}{2} \cdot 2 \cdot \frac{1}{2}\sin(x)\cos(x) + \frac{x}{2} + c \\[2ex] | ||
&= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex] | &= -\frac{1}{4}\sin(2x) + \frac{x}{2} + c \\[2ex] | ||
\end{align} | \end{align} | ||
<\math> | </math> | ||
<math> \text{Now evaluate}\int\sin^4(x)dx </math> | |||
<math> | |||
\begin{align} | |||
\int\sin^4(x)dx &= - \frac{1}{4}\cos(x)\sin^3(x) + \frac{3}{4} \int\sin^2(x)dx \\[2ex] | |||
&= - \frac{1}{4}\cos(x)\sin^3(x) + \frac{3}{4}(-\frac{1}{4}\sin(2x) + \frac{x}{2}) \\[2ex] | |||
&= - \frac{1}{4}\cos(x)\sin^3(x) - \frac{3}{16}\sin(2x) + \frac{3}{8}x + c \\[2ex] | |||
\end{align} | |||
</math> |
Latest revision as of 02:16, 29 November 2022