7.1 Integration By Parts/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(18 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> f'(x)= \int_{0}^{\frac{1}{2}}\cos^{-1}(x)\cdot dx </math> <br><br> | <math> f'(x)= \int_{0}^{\frac{1}{2}}\cos^{-1}(x)\cdot dx </math> <br><br> | ||
<math>\int_{0}^{\frac{1}{2}}\cos^{-1}(x) | <math>\int_{0}^{\frac{1}{2}}\cos^{-1}(x)dx</math> = <math>x\cos^{-1}(x)\bigg|_{0}^{\frac{1}{2}}+\int_{0}^{\frac{1}{2}}\frac{x}{\sqrt{1-x^2}}dx</math> = <math>(\frac{1}{2}\cdot\frac{\pi}{3}){-\frac{1}{2}}\int_{1}^{\frac{3}{4}}\frac{1}{\sqrt{u}}du</math> = <math>{\frac{\pi}{6}}-\frac{1}{2}\int_{1}^{\frac{3}{4}}u^{-\frac{1}{2}}du</math> | ||
= <math>{ | = [change the sign and flip the limits] <math>{\frac{\pi}{6}}+{(\frac{1}{2}}(2u^{\frac{1}{2}}))\bigg|_{\frac{3}{4}}^{1}</math> = <math>\frac{\pi}{6}+\frac{1}{2}(2-\sqrt{3})</math> = <math>\frac{\pi}{6}-\frac{\sqrt{3}}{2}+1</math> = <math>\frac{1}{6}(\pi+6-3\sqrt{3})</math> | ||
= <math>{ | |||
<math>{u}</math> = <math>{1-x^2}</math> | |||
<math>{du}</math> = <math>{-2x}</math> | |||
<math>{-\frac{1}{2}du}</math> = <math>{x}dx</math> | |||
<math>{u}</math> = <math>{\cos^{-1}(x)}</math> , <math>{dv}</math> = <math>dx</math> | |||
<math>{du}</math> = <math>{-\frac{1}{\sqrt{1-x^2}}dx}</math> , <math>{v}</math> = <math>{x}</math> |
Latest revision as of 01:25, 27 November 2022
= = =
= [change the sign and flip the limits] = = =
=
=
=
= , =
= , =